

Intelligent Vehicle Technologies & Smart Mobility

Prof Kyandoghere Kyamakya Prof Jean C. Chedjou

Lecture Overview

Co-funded by the Erasmus+ Programme of the European Union

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

Definitions

Intelligent Vehicles aim to fully utilize available technologies to <mark>assist drivers by enhancing</mark> <u>handling, safety, efficiency, and the comfort</u> of driving.

Smart Mobility

refers to using modes of transportation alongside or even instead of owning a gas-powered vehicle. This can take on many different forms, including ride-sharing, car-sharing, public transportation, walking, biking, and more.

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

- Number of credits
 - A total of 5 ECTS Credits
 - 45 hours for the theoretical lecture
 - 30 hours for the practical part: excises, lab, mini-seminars, homeworks

Lecture structure

- 2 Modules Theoretical part
 - MODULE 1: Intelligent Vehicle Technologies
 - MODULE 2: Smart Mobility
- 1 Module Practical part (with <u>3 Sub-Modules</u>)
 - MODULE 3.1: Students mini-seminars
 - MODULE 3.2: Experiments with the Simulation tool AUTOWARE
 - MODULE 3.3: Experiments with the Simulation tool SUMO

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

Teaching Method and Students performance Evaluation

- Theoretical part of the course
 - Frontal **presentations with Slides** by the Teachers (Slides to be placed in Moodle)
 - o <u>Selected videos</u> fitting the respective chapters (sources: Youtube, online open courses, etc.)
 - o Small weekly assignments. Weekly solutions to be uploaded in Moodle
- Practical part of the course
 - Students <u>mini-seminars</u> in groups of 2 students; 1 topic for each module. 1 Presentation for each mini-seminar. 1 final report of 6-to-8 page for each mini-seminar.
 - Some <u>simulation experiments using 2 selected Simulation tools</u>: some simple experiments and one complex project. 1 final report of 6-to-8 page for the complex project.
 - If possible, one **industrial visit** in a company working in one of the relevant fields.
- Evaluation of the course
 - The <u>weekly assignments</u> accompanying the theoretical course: 10% of final grade
 - o Mini-seminars, simulation labs and related presentations and final reports: 60% of final grade
 - Final written exam: 30% of final grade

2 Theoretical Modules: Overview

- Contents of Module 1: Intelligent Vehicle Technologies
 - **Chapter 1**: General introduction to Intelligent Vehicle Technologies (ITS overview, core ITS services, General architectures & frameworks)
 - Chapter 2: Enabling Technologies

(Environment Perception, Positioning & maps, Big data, Prediction and Routing, Control)

Chapter 3: Selected Applications

(Driver Assistance Syst., Cooperative Systems, Automated Driving, Automated Highway Systems)

- **Chapter 4**: Further aspects (incl. social, economic, simulation, and research) (Human Factors; Law, Ethical and Liability Issues; Acceptance; Socio-Economical Impact; Simulation,...)
- Contents of Module 2: Smart Mobility
 - **Chapter 5**: General introduction to Urban Mobility (trends and challenges)
 - **Chapter 6**: Fundamentals of Mobility Systems

(Systems and Infrastructures; Monitoring; Modeling and Simulation; Machine Learning Application)

Chapter 7: Mobility systems – Concepts and Technologies

(5 Smart Digital Layers, Smart Cities & Communities, Smart Mobility Concepts, Automation, Human Factors)

1 Practical Module: Overview

- Module 3: Mini-Seminars and Simulations
 - **Part 3.1**: Students Mini-seminars
 - Part 3.2: INTELLIGENT VEHICLES: Experiments with the Simulation Tool <u>AUTOWARE</u> (open source)
 - Part 3.3: SMART MOBILITY: Experiments with the Simulation Tool <u>SUMO</u> (open source)

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

• Bibliographic References

Co-funded by the Erasmus+ Programme of the European Union

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

• Bibliographic References

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

• Bibliographic References

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

- Some relevant Free Online Course (MOOCS)
 - <u>https://www.classcentral.com/subject/autonomous</u>
 - <u>https://www.classcentral.com/course/electric-vehicles-mobility-9909</u>
- Some illustrative videos
 - BEST VIDEO: it summarizes at best the big picture around Intelligent Vehicle
 - <u>https://www.youtube.com/watch?v=Q8Cn47L8FRQ</u>
 - OTHER VIDEOS
 - <u>https://www.youtube.com/watch?v=MJiDEDaBGBQ</u>
 - <u>https://www.youtube.com/watch?v=imo1kzbHIjY</u>
 - <u>https://www.youtube.com/watch?v=fPRYiXZDB7c</u>
 - <u>https://www.youtube.com/watch?v=hkYPtWBL4I0</u>
 - <u>https://www.youtube.com/watch?v=dhUy-ikmM4s</u>
 - <u>https://www.youtube.com/watch?v=VKkqKsQY9pE</u>
 - <u>https://www.youtube.com/watch?v=92IJSTQXaZk&t=9s</u>
 - <u>https://www.youtube.com/watch?v=F923EuB06Cl</u>
 - <u>https://www.youtube.com/watch?v=hhUNgfUxDL4</u>
 - <u>https://www.youtube.com/watch?v=HT-Y-mihazl&t=406s</u>
 - <u>https://www.youtube.com/watch?v=6uV25mTDUFY</u>

INTR**≜**S

Co-funded by the Erasmus+ Programme of the European Union

Intelligent Vehicle Technologies & Smart Mobility

Presentation of one illustrative video

<u>Source</u>: Youtube

Link: https://www.youtube.com/watch?v=Q8Cn47L8FRQ

itsjpo 481 subscribers

USDOT Connected Vehicle: The Future of Transportation

Category

Autos & Vehicles

INTELLIGENT VEHICLE TECHNOLOGIES & SMART MOBILITY

Detailed presentation of the 3 Modules

INTR**≜**S

Module 1: Intelligent Vehicles Technologies, Details

Contents of Module 1

Chapter 1: A General introduction to Intelligent Vehicle Technologies

- ITS (intelligent transport systems) overview
- Intelligent vehicles initiatives in various countries (USA, EUROPE, JAPAN)
- Core ITS services, a brief overview
- General architecture(s) / frameworks for intelligent vehicles
- Five key stages to the processing aspects of a self-driving vehicle

Chapter 2: Enabling Technologies

- Environment perception for intelligent vehicles
- Vehicular communication
- Positioning technologies and digital maps
- Big data in road transportation and mobility research
- Prediction and routing
- Path planning and decision making
- Control of intelligent vehicles

INTR**≜**S

Module 1: Intelligent Vehicle Technologies, Details

• Contents of Module 1

Chapter 3: Selected Applications

- Driver assistance systems and safety systems
- Cooperative systems
- Automated driving
- Automated Highway System (AHS)

Chapter 4: Further Aspects (incl. social, economical, simulation, and research)

- Human factors (human driver behaviors, user interfaces, impact on automated cars on society and mobilities)
- Law, ethics and liability issues (special legal questions, product liability, regulation, risks assessment (technical, legal, and economic))
- Accceptance issues
- Simulation tools (driving simulators, traffic simulation, data for training models, domain adaptation)
- The socio-economic impact of the intelligent vehicles: implementation strategies
- Future perspectives and hot research areas/issues

Module 2: Smart Mobility, Details

Contents of Module 2

Chapter 5: General Introduction to Urban Mobility

• Urban mobility trends and challenges (traffic congestion, parking problems, traffic accidents, energy consumption, environmental impact)

Chapter 6: Fundamentals of Mobility Systems

- Urban mobility systems and infrastructures
- Monitoring mobility in smart cities
- Modeling and simulation of mobility systems a brief introduction
- Learning from public information / inverse transportation problems (*machine learning applications in urban transport, inverse transportation problems, multiagent inverse transportation problems, network learning*)

Module 2: Smart Mobility, Details

Contents of Module 2

Chapter 7: Concepts and Technologies of Mobility Systems

- The 5 smart digital layers (urban layer, sensor layer, connectivity layer, data analytics layer, automation layer)
- Technologies and data transmission in ITS and smart mobility
- Smart cities, smart communities: definitions of the concepts
- Smart mobility in urban/metropolitan areas + case studies (people mobility, transport demand management, urban freight and city logistics, green mobility and low emission zones, other mobility solutions for the future)
- Building blocks of intelligent mobility
- Automation and autonomous driving in mobility systems
- Mobility as a service (MAAS) a brief overview
- Human factors

INTR S

Practical Module, Module 3: Details

- Contents of Module 3.1: Mini-Seminars
 - Part 3.1: Presentation (by teacher) of <u>possible topics</u> to be selected from
 - Part 3.2: Research (2-3 weeks) and preparation of a 30-minutes presentation on the selected topic
 - Part 3.3: Formulation (by the student) of a 6 to 8 pages report on the selected mini-seminar topic
 - Selected Examples (just for illustration) of Mini-Seminar Topics
 - ➢ INTELLIGENT VEHICLES
 - o Driver monitoring systems in intelligent vehicles
 - Analyzing driver-pedestrian interaction at crosswalks: A contribution to autonomous driving in urban environments
 - o The role of machine vision for intelligent vehicles
 - Graph-Based Modeling, Scheduling, and Verification for Intersection Management of Intelligent Vehicles
 - SMART MOBILITY
 - o User Tracking and Incentive Management in Smart Mobility Systems
 - o A taxonomy for planning and designing smart mobility services
 - o Mobile crowd sensing for smart urban mobility

Practical Module, Module 3: Details

- Contents of Module 3.1: Mini-Seminars
 - Part 3.1: Presentation (by teacher) of possible topics to be selected from
 - Part 3.2: Research and preparation of a 30-minutes presentation on the selected topic
 - Part 3.3: Formulation (by the student) of a 6 to 8 pages report on the selected mini-seminar topic
- Contents of Module 3.2: Experiments with the Simulation tool AUTOWARE (open source)
 - Part 3.4: Tutorial (by teacher) on the tool AUTOWARE + some simple exercises
 - Part 3.5: Realise (guided by the teacher): a) some middle-level exercises; and b) a complex simulation project with the tool AUTOWARE
 - Part 3.6: Formulation of a 6 to 8 pages report on the complex simulation project of part 3.5; also a related final a 30-minutes presentation

Practical Module, Module 3: Details

• Contents of Module 3.2: Experiments with the Simulation tool AUTOWARE (open source)

Some important Links on the Tool AUTOWARE

<u>Tutorials</u>: <u>https://www.lgsvlsimulator.com/</u>

Where to download it:

https://www.lgsvlsimulator.com/ https://www.lgsvlsimulator.com/docs/autoware-instructions/

Overview videos:

https://www.youtube.com/watch?v=yTjpxhzzWQE
https://www.youtube.com/watch?v=cBmIiR3jRvE

Practical Module, Module 3: Details

- Contents of Module 3.3: Experiments with the Simulation tool SUMO (open source)
 - Part 3.7: Tutorial (by teacher) on the tool SUMO + some simple exercises
 - Part 3.8: Realise (guided by the teacher) a complex simulation project with the tool SUMO + some simple exercises
 - Part 3.9: Formulation of a 6 to 8 pages report on complex simulation project of Part 3.8; also a related final a 30-minutes presentation

Practical Module, Module 3: Details

 Contents of Module 3.3: Experiments with the Simulation tool SUMO (open source)

Some important Links on the Tool SUMO

Tutorials:

https://sumo.dlr.de/docs/Tutorials.html https://sites.psu.edu/huawei/files/2018/05/SUMO an introduction from a beginner-19cmnuf.pdf https://www.youtube.com/watch?v=5ROw6KEAqic&list=PLJc63T23pL3vYHLQ3LOVRG KzbvO117mM

Where to download it:

https://sumo.dlr.de/docs/Downloads.html

Overview videos:

https://www.youtube.com/results?search_query=urban+mobility+simulation

Intelligent Vehicle Technologies & Smart Mobility

